Cosmology 2 (Prof. Rennan Barkana): Solution to Homework 1

1. In the case without Λ, we can do this analytically (numerically is also OK). Letting Ω_{m} and Ω_{r} be the present Ω in matter and radiation, the Friedmann equation is:

$$
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2}=H^{2}=H_{0}^{2}\left(\frac{\Omega_{m}}{a^{3}}+\frac{\Omega_{r}}{a^{4}}\right)
$$

where $\Omega_{r}=1-\Omega_{m}$. Solving this for $d t$, we get

$$
t(a)=\int d t=H_{0}^{-1} \int_{0}^{a} \frac{d a}{\sqrt{\Omega_{m} / a+\Omega_{r} / a^{2}}}=\frac{2}{3 \Omega_{m}^{2} H_{0}}\left[2 \Omega_{r}^{3 / 2}+\sqrt{\Omega_{m} a+\Omega_{r}}\left(\Omega_{m} a-2 \Omega_{r}\right)\right]
$$

Similarly,

$$
\tau(a)=\int \frac{d t}{a}=\frac{2}{\Omega_{m} H_{0}}\left(\sqrt{\Omega_{m} a+\Omega_{r}}-\sqrt{\Omega_{r}}\right) .
$$

With a cosmological constant, we have:

$$
t(a)=\int d t=H_{0}^{-1} \int_{0}^{a} \frac{d a}{\sqrt{\Omega_{m} / a+\Omega_{r} / a^{2}+\Omega_{\Lambda} a^{2}}}
$$

and

$$
\tau(a)=\int \frac{d t}{a}=H_{0}^{-1} \int_{0}^{a} \frac{d a}{\sqrt{\Omega_{m} a+\Omega_{r}+\Omega_{\Lambda} a^{4}}}
$$

Also note that $H_{0}^{-1}=9.78 \mathrm{Gyr} / h=14.4 \mathrm{Gyr}$. I will use index 1 for the model without Λ, and 2 with Λ. Today $a=1$. In the first model, $\Omega_{m}=1-9.07 \times 10^{-5}$, and in the second model, $\Omega_{m}=1-0.689-9.07 \times 10^{-5}$. So matter-radiation equality, $a=\Omega_{r} / \Omega_{m}$ is different in the two models: it is $a=9.07 \times 10^{-5}$ in the first model and $a=2.92 \times 10^{-4}$ in the second. Other example redshifts: $z=8$ (roughly cosmic reionization) and $z=1100$ (cosmic recombination). The numerical values (in Gyr units) are $t_{1}\left(9.07 \times 10^{-5}\right)=4.87 \times 10^{-6}, t_{2}\left(2.92 \times 10^{-4}\right)=$ $5.04 \times 10^{-5}, \tau_{1}\left(9.07 \times 10^{-5}\right)=0.114, \tau_{2}\left(2.92 \times 10^{-4}\right)=0.367, t_{1}\left(9.08 \times 10^{-4}\right)=2.38 \times 10^{-4}$, $t_{2}\left(9.08 \times 10^{-4}\right)=3.67 \times 10^{-4}, \tau_{1}\left(9.08 \times 10^{-4}\right)=0.638, \tau_{2}\left(9.08 \times 10^{-4}\right)=0.910, t_{1}(0.111)=$ $0.356, t_{2}(0.111)=0.637, \tau_{1}(0.111)=9.36, \tau_{2}(0.111)=16.4, t_{1}(1)=9.63, t_{2}(1)=13.8$, $\tau_{1}(1)=28.6, \tau_{2}(1)=46.2$.
2. The smoothed density field is

$$
\bar{\delta}(\vec{x})=\int d^{3} x_{1} W\left(\left|\vec{x}_{1}-\vec{x}\right|\right) \delta\left(\vec{x}_{1}\right)
$$

Then

$$
\sigma^{2}=\langle\bar{\delta}(\vec{x}) \bar{\delta}(\vec{x})\rangle=\int d^{3} x_{1} \int d^{3} x_{2} W\left(\left|\vec{x}_{1}-\vec{x}\right|\right) W\left(\left|\vec{x}_{2}-\vec{x}\right|\right)\left\langle\delta\left(\vec{x}_{1}\right) \delta\left(\vec{x}_{2}\right)\right\rangle
$$

Using inverse Fourier transforms and the definition of the power spectrum, we showed in class that

$$
\left\langle\delta\left(\vec{x}_{1}\right) \delta\left(\vec{x}_{2}\right)\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \vec{k} \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)} P(k) .
$$

We use this in the expression for σ^{2}, and also we write each term of the form $W(r)$ as the inverse Fourier transform of $\tilde{W}(k)$. We get an expression with five integrals:
$\sigma^{2}=\int d^{3} x_{1} \int d^{3} x_{2} \int \frac{d^{3} k}{(2 \pi)^{3}} \int d^{3} k_{1} \int d^{3} k_{2} e^{i \vec{k} \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)} P(k) \frac{\tilde{W}\left(k_{1}\right)}{(2 \pi)^{3}} e^{i \vec{k}_{1} \cdot\left(\vec{x}_{1}-\vec{x}\right)} \frac{\tilde{W}\left(k_{2}\right)}{(2 \pi)^{3}} e^{i \vec{k}_{2} \cdot\left(\vec{x}_{2}-\vec{x}\right)}$.
The integral over \vec{x}_{1} gives $(2 \pi)^{3}$ times a Dirac delta function of $\vec{k}+\vec{k}_{1}$, and then the \vec{k}_{1} integral simply sets \vec{k}_{1} equal to $-\vec{k}$. We similarly evaluate the \vec{x}_{2} and \vec{k}_{2} integrals (i.e., we set \vec{k}_{2} equal to \vec{k}). Thus, we obtain (note that $\tilde{W}(k)$ only depends on the magnitude of \vec{k}):

$$
\sigma^{2}=\frac{1}{(2 \pi)^{3}} \int d^{3} k \tilde{W}^{2}(k) P(k)
$$

Note that the result does not depend on the starting point \vec{x} (since this field is statistically homogeneous).
3. The variance is:

$$
\sigma^{2}(R)=\int_{0}^{\infty} \frac{1}{2 \pi^{2}} k^{2} d k P(k) \frac{9}{x^{6}}[\sin (x)-x \cos (x)]^{2}
$$

where $x=k R$ and $P(k)=A k / k_{\text {eq }}$ for $k<k_{\text {eq }}, P(k)=A\left[k / k_{\mathrm{eq}}\right]^{-3}$ for $k>k_{\mathrm{eq}}$. Thus,

$$
\sigma^{2}(R)=\frac{9}{2 \pi^{2}} A k_{\mathrm{eq}}^{3}\left\{\frac{1}{x_{\mathrm{eq}}^{4}} \int_{0}^{x_{\mathrm{eq}}} \frac{d x}{x^{3}}[\sin (x)-x \cos (x)]^{2}+\int_{x_{\mathrm{eq}}}^{\infty} \frac{d x}{x^{7}}[\sin (x)-x \cos (x)]^{2}\right\},
$$

where $x_{\text {eq }}=k_{\text {eq }} R$.
We calculate that $k_{\text {eq }} 8 / h=0.772$, and then the normalization to $\sigma\left(R_{0}\right)=0.81$ gives $A k_{\text {eq }}^{3}=12.6$. See the plots below, of the dimensionless quantities $P(k) k_{\text {eq }}^{3}$ and $\sigma(R)$.

