
Cosmology 2 (Prof. Rennan Barkana): Solution to Homework 1

1. In the case without Λ, we can do this analytically (numerically is also OK). Letting Ωm

and Ωr be the present Ω in matter and radiation, the Friedmann equation is:(
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where Ωr = 1− Ωm. Solving this for dt, we get
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With a cosmological constant, we have:
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Also note that H−1
0 = 9.78 Gyr/h = 14.4 Gyr. I will use index 1 for the model without Λ, and

2 with Λ. Today a = 1. In the first model, Ωm = 1− 9.07× 10−5, and in the second model,

Ωm = 1 − 0.689 − 9.07 × 10−5. So matter-radiation equality, a = Ωr/Ωm is different in the

two models: it is a = 9.07×10−5 in the first model and a = 2.92×10−4 in the second. Other

example redshifts: z = 8 (roughly cosmic reionization) and z = 1100 (cosmic recombination).

The numerical values (in Gyr units) are t1(9.07 × 10−5) = 4.87 × 10−6, t2(2.92 × 10−4) =

5.04× 10−5, τ1(9.07× 10−5) = 0.114, τ2(2.92× 10−4) = 0.367, t1(9.08× 10−4) = 2.38× 10−4,

t2(9.08× 10−4) = 3.67× 10−4, τ1(9.08× 10−4) = 0.638, τ2(9.08× 10−4) = 0.910, t1(0.111) =

0.356, t2(0.111) = 0.637, τ1(0.111) = 9.36, τ2(0.111) = 16.4, t1(1) = 9.63, t2(1) = 13.8,

τ1(1) = 28.6, τ2(1) = 46.2.

2. The smoothed density field is

δ̄(~x) =

∫
d3x1W (|~x1 − ~x|)δ(~x1) .
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Using inverse Fourier transforms and the definition of the power spectrum, we showed in

class that
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We use this in the expression for σ2, and also we write each term of the form W (r) as the

inverse Fourier transform of W̃ (k). We get an expression with five integrals:
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The integral over ~x1 gives (2π)3 times a Dirac delta function of ~k + ~k1, and then the ~k1

integral simply sets ~k1 equal to −~k. We similarly evaluate the ~x2 and ~k2 integrals (i.e., we

set ~k2 equal to ~k). Thus, we obtain (note that W̃ (k) only depends on the magnitude of ~k ):
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Note that the result does not depend on the starting point ~x (since this field is statistically

homogeneous).

3. The variance is:
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where x = kR and P (k) = Ak/keq for k < keq, P (k) = A[k/keq]−3 for k > keq. Thus,
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where xeq = keqR.

We calculate that keq8/h = 0.772, and then the normalization to σ(R0) = 0.81 gives

Ak3
eq = 12.6. See the plots below, of the dimensionless quantities P (k)k3

eq and σ(R).




